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Universitat de Barcelona
26 al 30 de gener de 2026



Divertiment aritmètic
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Què vol dir calcular?

D’acord amb el Diccionari de la llengua catalana de l’IEC,

calcular
és

determinar (un valor numèric) per un procés matemàtic.

I segons el Cercaterm del TERMCAT (i també el diccionari),
càlcul
és

procés matemàtic que permet determinar un valor numèric
partint de certes dades.
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I segons el Cercaterm del TERMCAT (i també el diccionari),
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Què vol dir calcular? (cont.)

També s’hauria pogut dir

calcular: l’objectiu del càlcul o bé l’acció del càlcul,
i càlcul: l’efecte de calcular;

i tapoc no diŕıem gaire res.

Intentaré precisar, des d’un punt de vista matemàtic, què
volem dir quan diem calcular.
Els matemàtics no calculem només nombres, sinó també, per
exemple, grups de Galois, grups d’isotropia, òrbites d’accions,
espais, derivades, integrals, homotopies, homologies, etcètera.
Em limitaré al concepte de calcular nombres; i, encara més, al
concepte de

calcular nombres enters.
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volem dir quan diem calcular.
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La successió de Fibonacci

Per a exemplificar la reflexió, faré servir la successió de
Fibonacci. Recordem-la.

Definició
Anomenarem successió de Fibonacci la successió de nombres
enters (naturals) donada per

S : s0 = 0, s1 = 1, s2 = 1, s3 = 2, s4 = 3, s5 = 5, . . . ,

sn+2 = sn+1 + sn, n ∈ N.

És, doncs, un exemple de successió recursiva d’ordre 2.



La successió original de Fibonacci

La successió original de Fibonacci (cf. [Fi 1202]), que apareix
com a resposta a un problema de conills, és la successió de
nombres naturals, Z = {zn}n≥0, determinada per la relació de
recurrència zn+2 = zn+1 + zn, n ≥ 0, a partir de z0 = 1, i
z1 = 2; és a dir, la successió

z0 = 1, z1 = 2, z2 = 3, z3 = 5, z4 = 8, z5 = 13, z6 = 21, . . .

De fet, Fibonacci necessitava, per a començar, almenys una
parella reproductora. Actualment, se sol canviar l’inici de la
successió pels dos termes 0, 1 (i hom oblida el problema dels
conills). Notem, doncs, que la successió original de Fibonacci
és la successió {zn := sn+2}n≥0.



La successió de Fibonacci (cont.)

Si ens atenim a la definició del Diccionari, podŕıem dir que ja
hem calculat tots els termes de la successió de Fibonacci,
perquè els tenim determinats uńıvocament per la definició de
la successió. Però, segurament, no és això què volem entendre
per calcular-los.

En efecte, si es demana calcular el terme desè de la successió
de Fibonacci, o sigui, s10 o z8, no es pretén que la resposta
sigui que “és el terme que s’obté en aplicar la definició per a
n = 10”, sinó que es pretén saber la quantitat de parelles de
conills que hauŕıem d’alimentar d’aćı a 8 mesos!
Es pretén, doncs, una resposta del tipus “cinquanta-cinc” (o
bé, tot i que no és gaire freqüent, cinc desenes i mitja).
Per tant, calcular vol dir alguna cosa diferent? O, potser, més
precisa?
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La successió de Fibonacci (cont.)

No és dif́ıcil demostrar (ni molt menys, comprovar-ho), que
per als termes de la successió de Fibonacci se satisfà la
fórmula tancada, no recursiva,

sn =

(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n

√
5

, n ≥ 0, (1)

on les operacions ho són de nombres reals. Podŕıem dir,
doncs, que aquesta fórmula també calcula els termes de la
successió de Fibonacci, perquè en dóna una expressió uńıvoca i
ineqúıvoca per a cadascun.
I si es fan les operacions per a n = 10 s’obté (naturalment!)
que s10 val cinquanta-cinc, cosa que escrivim en la forma
s10 = 55.



Què vol dir calcular? (cont.)

Sembla, doncs, que el resultat de calcular el terme desè sigui el
nombre 55. Però, calcular, és exactament això?

(Pausa)

(Reflexió)

No!
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Què vol dir calcular? (cont.)

De fet, allò que desitgem és una expressió decimal del nombre
s10. O potser, una expressió binària o hexadecimal, o en una
base diferent de numeració.

Doncs, podŕıem dir que calcular un nombre enter és donar-ne
una expressió en una base determinada de numeració;
usualment, la decimal, però també les binària o hexadecimal
(o altres).
És a dir, donar-ne la successió de xifres que el representa (en
la base triada). I per a posar de manifest la base, podem dir
calcular un nombre en base b. I també, com és habitual,
ometre la base quan parlem de l’expressió decimal.
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Podem calcular-ne els termes?

És possible calcular qualsevol terme de la successió de
Fibonacci, o sigui, donar-ne l’expressió decimal (o binària, o
hexadecimal, o . . . )?

Canviem el terme s10 pel terme s101. Si utilitzem la fórmula
tancada (1), amb paciència (cent sumes) o, millor, amb l’ús
d’un algoritme binari d’exponenciació, (en tenim prou si fem
18 multiplicacions, una resta i una simplificació), obtenim que

s101 = 573 147844 013817 084101,

un nombre de vint-i-una xifres decimals (al cap de 99 mesos,
o sigui, 8 anys i 3 mesos, moltes parelles de conills!).
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Podem calcular-ne els termes?

Ens proposem “justificar” que, en general, no és f́ısicament
factible el càlcul de l’expressió decimal (ni binària, ni
hexadecimal) de qualsevol terme de la successió.

És fàcil demostrar que cada dos termes de la successió el
nombre de xifres binàries augmenta, com a ḿınim, en una
unitat. De fet, tenim un creixement exponencial de base
1 +

√
5

2
>

√
2 (> 1). Si tenim en compte que una estimació

f́ısica del nombre de part́ıcules elementals de l’univers
n’aproxima la quantitat pel nombre 1080, no podem assignar
una part́ıcula elemental a cadascuna de les xifres binàries de
cap terme de la successió que en tingui més de 1080; per tant,
és f́ısicament impossible donar l’expressió binària dels termes
de la successió més enllà, per exemple, del terme 2 · 1080-èsim
(de fet, ni molt abans).
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La “granja” de Fibonacci

Exercici
Si Fibonacci hagués pogut posar en pràctica la granja en les
condicions enunciades, quantes parelles de conills hauria hagut
d’alimentar quan es va morir, quaranta-vuit anys més tard?

Solució
La resposta és el nombre de 121 xifres decinals,
z12·48 = s12·48+2 = s578 = 2 788502 654934 314115 214901
056869 862215 023259 562288 282318 173443 845537
555504 066971 990229 791673 629864 620577 714101
111120 681089, molt més gran que el nombre estimat de
part́ıcules elementals de l’univers!



La “granja” de Fibonacci

Exercici
Si Fibonacci hagués pogut posar en pràctica la granja en les
condicions enunciades, quantes parelles de conills hauria hagut
d’alimentar quan es va morir, quaranta-vuit anys més tard?

Solució
La resposta és el nombre de 121 xifres decinals,
z12·48 = s12·48+2 = s578 = 2 788502 654934 314115 214901
056869 862215 023259 562288 282318 173443 845537
555504 066971 990229 791673 629864 620577 714101
111120 681089, molt més gran que el nombre estimat de
part́ıcules elementals de l’univers!



La “granja” de Fibonacci (cont.)

L’expressió binària d’aquest nombre (primerament, la xifra
“més significativa”) és la successió de les 401 xifres:
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,

0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1,

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,

0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,

1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0,

0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,

0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,

0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 1.



La “granja” de Fibonacci (cont.)

I l’expressió hexadecimal és la succcessió de les 101 xifres (de
nou, primerament la xifra més significativa):
1, 1, 4, 7, 2, 9, 3, 5, 4, 14, 6, 10, 4, 3, 13, 9, 1, 9, 6, 11, 9, 1,
7, 15, 7, 3, 1, 11, 14, 11, 0, 14, 13, 14, 3, 12, 1, 9, 0, 9, 7, 1,
4, 2, 5, 2, 2, 15, 12, 4, 15, 8, 1, 3, 1, 4, 1, 13, 11, 6, 2, 15,
13, 15, 4, 0, 4, 3, 2, 2, 14, 6, 8, 2, 11, 6, 11, 14, 3, 10, 8, 10,
10, 13, 11, 9, 9, 0, 4, 15, 5, 15, 14, 7, 1, 15, 3, 5, 8, 8, 1;
o, en la notació estàndard,
1, 1, 4, 7, 2, 9, 3, 5, 4, e, 6, a, 4, 3, d , 9, 1, 9, 6, b, 9, 1, 7,
f , 7, 3, 1, b, e, b, 0, e, d , e, 3, c , 1, 9, 0, 9, 7, 1, 4, 2, 5, 2,
2, f , c , 4, f , 8, 1, 3, 1, 4, 1, d , b, 6, 2, f , d , f , 4, 0, 4, 3, 2,
2, e, 6, 8, 2, b, 6, b, e, 3, a, 8, a, a, d , b, 9, 9, 0, 4, f , 5, f ,
e, 7, 1, f , 3, 5, 8, 8, 1.



La “granja” de Fibonacci (cont.)

Notem que cap d’aquestes expressions (decimal, binària, o
hexadecimal) mostra un patró; com a ḿınim, no un patró
senzill.

Ara bé, per a la successió de Fibonacci, hi ha una base de
numeració que permet (d)escriure la successió de xifres en
aquesta base per a qualsevol dels seus termes. Aquesta base
no és, però, entera.
Observem primerament els dos resultats següents.
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Base de numeració

Proposició
Fixem un nombre real b > 1, qualsevol. Per a tot nombre real
positiu x > 0, existeixen un nombre enter n ∈ Z i un únic
nombre natural k ∈ N per als quals se satisfan les propietats

0 ≤ k < b, k · bn ≤ x < (k + 1)bn,

o sigui, 0 ≤ x − k · bn < bn.

Dels nombres naturals k tals que 0 ≤ k < b en podem dir
xifres en base b. I notem que, com que b > 1, com a ḿınim hi
ha les xifres 0 i 1.



Base de numeració (cont.)

Demostració
Com que b > 1, existeix un nombre enter n ∈ Z tal que
0 ≤ x < bn+1.
L’interval [0, bn+1) es pot pensar dins de la reunió disjunta,
per als valors naturals de k < b, dels intervals
[k · bn, (k + 1)bn), tots de longitud bn.
Aix́ı, x pertany a un (únic) interval d’aquests, i això determina
k , de manera que x és més gran o igual que l’origen de
l’interval, k · bn, i la distància de l’origen a x és menor que la
longitud de l’interval, bn.
Aquestes són les propietats que voĺıem demostrar. □



Base de numeració (cont.)

Corol.lari
Fixem un nombre real b > 1, qualsevol. Per a tot nombre real
positiu x > 0, sigui n ∈ Z el nombre enter tal que
bn ≤ x < bn+1. Llavors, existeix una faḿılia de xifres en base
b, {km : km ∈ N, 0 ≤ km < b, m ∈ Z, m ≤ n}, tal que

x =
∑

−∞<m≤n

km · bm (expressió de x en base b).



Base de numeració (cont.)

Demostració
La proposició anterior ens ensenya l’existència de la xifra kn,
per a un valor de n tal que 0 ≤ x < bn+1, i que per al nombre
x − kn · bn es té la mateixa propietat però per a n − 1 en lloc
de n, i que per al nombre x − kn · bn − kn−1 · bn−1 es té la
mateixa propietat però per a n− 2 en lloc de n, etcètera. Aix́ı,
doncs, la faḿılia es construeix recursivament, de manera
decreixent: kn, kn−1, kn−2, . . .
I com que la successió {bn}n<0 té ĺımit 0, la diferència entre x
i les successives sumes finites,∑

n−i<m≤n

km · bm, i ≥ 0,

tendeix a zero, quan i tendeix a infinit; és a dir, la suma de la
faḿılia coincideix amb el valor de x , com calia veure. □



Base de numeració (cont.)

El cas b = 10 és l’expressió decimal de qualsevol nombre real
positiu, amb xifres 0, 1, 2, . . . , 9.

El cas b = 2 és l’expressió binària, amb xifres 0, 1.

I el cas b = 16 és s’expressió hexadecimal, amb xifres 0, 1, 2,
3, . . . , 15, on les 10, 11, . . . , 15 es representen usualment per
a, b, c , d , e i f .

Notem que en Aritmètica elemental l’expressió d’un nombre
natural en una base entera sovint es construeix a la inversa, és
a dir, començant per la xifra menys significativa, per divisions
successives per la base.
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Una bona base de numeració per als nombres de

Fibonacci

Per a l’expressió dels termes de la successió de Fibonacci, és

convenient utilitzar la base b :=
1 +

√
5

2
. Per les seves

propietats, aquest nombre s’acostuma a anomenar el nombre
auri (o nombre d’or).

Notem que, com que 1 < b < 2, les xifres en aquesta base són
0 i 1.

El resultat següent descriu la successió de xifres en aquesta
base per a qualsevol terme de la successió de Fibonacci.



Expressió dels nombres de Fibonacci

Teorema

Considerem la successió de Fibonacci, i sigui b :=
1 +

√
5

2
. Se

satisfà que s0 = 0, i, per a n ≥ 1,

sn =

{
bn−2 + bn−6 + · · ·+ b−n+4 + b−n+1, si n és senar,

bn−2 + bn−6 + · · ·+ b−n+2, si n és parell.

Aix́ı, la succcessió de xifres en base b per al terme sn de la
successió, n ≥ 1, només té xifres diferents de zero en els llocs
n − 2, n − 6, . . . , −n + 4, i −n + 1, si n és senar (notem que
el darrer salt en l’́ındex és de −3 unitats, en lloc de −4), o en
els llocs n − 2, n − 6, . . . , −n + 6, −n + 2, si n és parell; i en
aquests llocs, la xifra és 1.



Exemples

s0 = 0

s1 = b0

s2 = b0

s3 = b + b−2

s4 = b2 + b−2

s5 = b3 + b−1 + b−4

s6 = b4 + b0 + b−4

s7 = b5 + b + b−3 + b−6

s8 = b6 + b2 + b−2 + b−6

s9 = b7 + b3 + b−1 + b−5 + b−8



Demostració del teorema

Notem que b−1 =

√
5− 1

2
, que b + b−1 =

√
5, i que

b2 − 1 = b, i recordem l’expressió (1) de sn donada més

amunt, de manera que sn =
bn + (−1)n+1b−n

b + b−1
.

Considerem primerament el cas en què n és senar, i posem
n = 2m + 1, m ∈ N. Com que s1 = 1 = b0, que ja és una
expressió en base b, només cal considerar el cas en què m ≥ 1.

Tenim que s2m+1 =
b2m+1 + b−(2m+1)

b + b−1

= b2m − b2m−2 + b2m−4 − · · ·+ (−1)sb2m−2s + · · ·+ b−2m,

una suma de 2m+ 1 termes, 0 ≤ s ≤ 2m. Notem que hi ha m
diferències b2m−4r − b2m−4r−2, per a 0 ≤ r ≤ m − 1, i un
terme final, b−2m. (I que això també val per a m = 0.)



Demostració del teorema (cont.)

Si en cadascuna de les diferències de dos termes consecutius
fem servir que b2 − 1 = b, tenim que

b2m−4r − b2m−4r−2 = b2m−4r−2(b2 − 1)

= b2m−4r−2 · b = b2m−4r−1,

per a 0 ≤ r ≤ m − 1, de manera que, en substituir en
l’expressió anterior per a s2m+1, obtenim que, per a m ≥ 0, és

s2m+1 = b2m−1 + b2m−5 + b2m−9 + · · ·+ b−2m+3 + b−2m,

una suma de m + 1 termes, tots amb coeficient 1. Doncs, la
successió de xifres en base b és la donada a l’enunciat.



Demostració del teorema (cont.)
Estudiem, ara, el cas en què n és parell, posem n = 2m,
m ∈ N; i com que s0 = 0, que ja és una expressió en base b,
només cal considerarel cas en què m ≥ 1.
Podem utilitzar que ja coneixem l’expressió dels termes d’́ındex
senar i que se satisfà que s2m = s2m+1 − s2m−1.
Aix́ı, doncs, per a m ≥ 1 tenim que

s2m−1 = b2m−3 + b2m−7 + · · ·+ b−2m+5 + b−2m+2

i, per tant, s2m = s2m+1 − s2m−1 =

= b2m−1 + b2m−5 + · · ·+ b−2m+7 + b−2m+3 + b−2m

− (b2m−3 + b2m−7 + · · ·+ b−2m+5 + b−2m+2)

=
(
b2m−3 + b2m−7 + · · ·+ b−2m+5

)
(b2 − 1)

+ b−2m+3 − b−2m(b2 − 1) = · · ·



Demostració del teorema (cont.)
s2m = s2m+1 − s2m−1 =

=
(
b2m−3 + b2m−7 + · · ·+ b−2m+5

)
(b2 − 1)

+ b−2m+3 − b−2m(b2 − 1)

=
(
b2m−3 + b2m−7 + · · ·+ b−2m+5

)
· b

+ b−2m+3 − b−2m · b

=
(
b2m−2 + b2m−6 + · · ·+ b−2m+6

)
+ b−2m+3 − b−2m+1

=
(
b2m−2 + b2m−6 + · · ·+ b−2m+6

)
+ b−2m+1(b2 − 1)

=
(
b2m−2 + b2m−6 + · · ·+ b−2m+6

)
+ b−2m+1 · b

= b2m−2 + b2m−6 + · · ·+ b−2m+6 + b−2m+2,

que proporciona la successió de xifres enunciada. □



Exemple

La successió de xifres en la base b :=
1 +

√
5

2
del nombre de

Fibonacci s578 conté un 1 en cadascuna de les 289 posicions
576, 572, 568, . . . , −568, −572, −576, i un 0 en totes les
altres.
Notem que és més senzill descriure aquesta expressió, de 289
elements diferents de 0 (o, si es vol, dels 1153 zeros i uns),
que qualsevol de les expressions binària, decimal o hexadecimal
donades més amunt, encara que la decimal i l’hexadecimal
siguin més curtes.



Observació

Les expressions de nombres reals positius en aquesta base no
tenen per què ser úniques, com succeeix amb les successions en
una base entera qualsevol. Per exemple, les dues expressions
(0, 1, 1), (1, 0, 0) (en ordre decreixent d’exponents, com és
habitual) ho són del mateix nombre, perquè bk+2 = bk+1 + bk .



Conclusió

Aix́ı, doncs, encara que segurament no podem calcular
l’expressió decimal, binària o hexadecimal de qualsevol terme
de la successió de Fibonacci, śı que en podem calcular
l’expressió en base el nombre auri. Per a cadascun dels termes
de la successió de Fibonacci, hi ha una quantitat finita de
xifres diferents de 0, que són 1, i podem dir exactament a quin
lloc de la successió de xifres estan.

Aquest fet és semblant al fet que, segurament, no podem
escriure l’expressió decimal de qualsevol nombre de Fermat ni
de qualsevol nombre de Mersenne. Però, òbviament, śı que en
podem (d)escriure l’expressió binària!
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edició; des de 2007, s’actualitza sovint. Recurs en ĺınia,
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