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Learning seminar on Quadratic Chabauty

The final goal of the seminar is to understand the use of quadratic Chabauty in
[BDMTV]. Two intermediate goals will occupy the first 3 of the 4 sessions of
the seminar:

� In order to motivate the problem addressed in [BDMTV], in talks 1,3,5
we want to understand Mazur’s determination of the set of rational points
of the modular curves X0(N).

� In order to explain some background for the techniques used in [BDMTV],
in talks 2,4,6 we want to study Coleman’s approach to the Chabauty
method.

Talk 1. (February 22 at S3 of UB; Enric Florit) Quickly cover sections 1 and
2 of [Maz] with the objective of showing why Thm.1 reduces to Thm. 2 (if
possible, comment on Kubert’s input only mentioned in Mazur’s paper ([Kub,
IV. 1. 2]). Of Section 3, state the proposition on p. 122 and explain how Axiom
3 holds from the Theorem of Herbrand-Kummer.

Talk 2. (February 22 at S3 of UB; Ignasi Sánchez) Let X be a curve over
Q. Chabauty’s theorem states that, if the rank of the Jacobian J of X is less
than the genus of X, then X(Q) is finite. A crucial observation is that in
that case there exists a continuous homomorphism J(Qp) → Qp such that the
group of global points J(Q) is contained in the kernel. In [Col] Coleman makes
Chabauty’s method effective. Explain loc.cit. in detail.

Talk 3. (March 29 at C1/366 of UAB; Xavier Guitart) Cover the argument
spreading from page 125 to page 133 of [Maz]: that is, assuming that Axiom
2 holds for the Eisenstein quotient complete the proof of the proposition on p.
122 of [Maz]. The validity of Axiom 2 for the Eisenstein quotient will checked
in Talk 5.

Talk 4. (March 29 at C1/366 of UAB; Marc Masdeu) The easiest case in which
Chabauty’s condition on the rank fails is that of an elliptic curve of rank 1.
In [BB] Balakrishnan–Besser replace the linear p-adic logarithm of Chabauty’s
argument by a quadratic map. More precisely, they use a p-adic height pairing
in order to determine the set of integral points of the elliptic curve. Explain
Section 1 and 2 of [BB] as well as the necessary background on local heights
from [CG]. Given an overview over the theory of Coleman integration necessary
for Section 3 (see for example [Bes2, Section 1.4]).

Talk 5. (April 26; Francesc Fité) Prove that Axiom 2 of the proposition on
page 122 of [Maz] holds for the Eisenstein quotient. For this, instead of follow-
ing [Maz, Section 4], follow [MS].



Talk 6. (April 26; Santiago Molina) [BB] Explain Section 3 to 5 of [BB] in as
much detail as possible. If time permits, discuss one of the examples presented
in Section 6.

Talk 7. (May 31?; Lennart Gehrmann) Explain Besser’s approach to Coleman
integration using Tannakian formalism (see[Bes1] and [Bes2]).

Talk 8. (May 31?) Give an overview of the strategy and ingredients used in
the proof of the main theorem of [BDMTV].
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